
Quantum percolation thresholds and random walk fractal dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 L471

(http://iopscience.iop.org/0305-4470/20/7/009)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 10:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 20 (1987) L471-LA77. Printed in the UK 
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fractal dimensions 
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Abstract. We present an empirical, novel relationship between the quantum percolation 
threshold, pg*, the lattice coordination number, Z, and the random walk fractal dimension, 
d:. The values of p :  obtained from this relationship are in good agreement with literature 
results from numerical simulations on the cubic lattice and its higher dimensional variants. 
Comparisons with the perturbative theory of Hams are discussed. The impact of the 
approximate nature of the Alexander-Orbach conjecture on  our results has been found to 
be minimal. We present estimates of pg* for several common three-dimensional lattices for 
which no simulation data exist. Our result is expected to contribute toward estimating p: ,  
particularly in systems for which the underlying lattice structures are either non-trivial o r  
non-existent. The physical implications of our results are discussed. 

The question of Anderson localisation has been the subject of intense research interest 
[l, 21. One research area involves the so-called off-diagonal disorder in the following 
tight-binding Hamiltonian: 

H = C ( uiiataj +complex conjugate). (1) 
i#j 

Here uii is the hopping matrix element between site i and site j, and a' and aj are, 
respectively, the creation and annihilation operators for the quantum mechanical 
particle at site i and j. One imposes a probability distribution on uij such that uij = U # 0 
with probability pq and uij = 0 with probability 1 -pq. This is the quantum analogue 
of the classical bond percolation problem [3-lo]. One can study the nature of the 
eigenstates of the Hamiltonian described by equation (1) as a function of probability, 
p q ,  the Euclidean dimension, d, and the underlying lattice structure. One of the major 
issues is the critical value of pq, p z  below which no extended eigenstate of equation 
(1) exists. Extensive calculations [3-101 on p ; ,  based on a variety of numerical 
techniques, have been reported for values up to d = 8. One general result of this effort 
is the finding that p ;  > p r ,  the critical threshold for the corresponding classical bond 
percolation problem [ 11- 131. The most comprehensive results reported so far have 
been obtained for the square lattice ( d  = 2) and its higher dimensional equivalence. 
It is not known what effect the topology of the underlying lattice structure has on pg*. 
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The purpose of this letter is to introduce a relationship that is approximately 
dimensionally invariant for quantum percolation and to demonstrate its empirical 
validity. This relationship is obtained by exploiting the similarity, as well as the 
differences, between quantum and classical percolation theory. For classical bond 
percolation, the value of p z  depends on the lattice types and the Euclidean dimension 
[14-161. However, the quantity p:Z (where Z = coordination number of the lattice) 
has been known for some time to be approximately dimensionally invariant. In fact, 
one finds that the relation 

p z Z - d / ( d  -1) (2) 

[14-161 agrees quite well with the numerical simulation for Z = 3  to 12 in two and 
three dimensions. An important question is whether a corresponding relationship 
exists for quantum percolation. 

We have discovered an empirical quantum analogue to equation (2) having the 
following form: 

pq*Z= d L / ( d L -  1) (3 )  

where p,* is the critical threshold for quantum percolation and dk  is the random walk 
fractal dimension, which is defined such that the mean square displacement (R( t ) ' )  
of a random walker on a fractal is proportional to t ' ld;  for 'short' time t [ 17-19]. Note 
that equation (3) has exactly the same form as the corresponding classical relationship. 
The one crucial difference is the replacement of the Euclidean dimension, d, by the 
random walk fractal dimension, dL. 

In looking for a quantum analogue of equation (2) one is guided by the expectation 
that pq*Z is (at least approximately) a dimensionally invariant quantity. However, the 
effective dimension that enters into the RHS of equation (3 )  would have to include the 
effect of the Euclidean dimension as well as the particular features of quantum 
propagation that would lead to localisation on a percolation cluster. In classical bond 
percolation, the threshold is determined by the geometrical connectivity of the cluster. 
In  quantum bond percolation, one needs to go beyond purely geometrical effects. We 
shall present physical arguments suggesting that, due to interference effects and the 
Alexander-Orbach conjecture, d k  is the crucial parameter that contains the dimensional 
dependence as well as the peculiar features of the quantum percolation process [20]. 
However, before one embarks on these discussions, let us examine how well equation 
(3)  works out in practice. 

Calculated results using equation (3)  are shown in table 1. The lattices are the 
simple cubic and its higher dimensional variants. The results from our empirical 
relationship agree well with numerical data obtained from a variety of simulation 
techniques. For d = 5 ,  6, 7 and 8, the results agree very well with available data [8]. 
For d = 3 ,  there is scatter in the literature numerical simulation data [5,7,8]. To gain 
a better perspective, we have plotted in figure 1 all the available numerical data from 
the literature, together with our results from equation (3). The full curve is the best 
fit drawn through the literature data and is intended to give an indication of likely 
values of p,* for d = 3 and 4, as suggested by the data trend. The literature results 
indicate favourable agreement with equation (3), including d = 3 and 4. We have 
computed dL from the fractal dimension, d f ,  by using the Alexander-Orbach (AO) 

conjecture [20]. The AO conjecture is expected to be sufficiently accurate that it is 
numerically useful for d 2 3 ,  as the present application illustrates. Like its classical 
analogue, equation (3)  has no known rigorous justification. It is probable that equation 
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Figure 1. Quantum bond percolation thresholds ( p : )  against Euclidean dimension ( d ) .  
The numerical simulation data (m) are from references [3-lo], 0 is from equation (3) and 
0 from [26] and [27]. The full curve is a best fit of the numerical simulation data. 

(3) is a leading-order approximation that works well in practice. However, the physical 
reasons for the significance of dL can be understood as follows. 

The mean square displacement ( R 2 )  of a random walker on a fractal structure (such 
as a percolation cluster near the critical threshold) scales with time t as ( R 2 )  - ( f ) l / d w .  

This relationship holds for time short enough that ( R 2 )  is less than 6, the correlation 
length of the percolation network [18]. Note that d k >  1 [18, 191. This is contrary to 
the situation on a Euclidean lattice in which (R’) - t. The physical reason that d k  > 1 
is because in the fractal regime the walker spends a lot of time in revisiting previously 
visited sites. In fact, the probability of return to an arbitrarily chosen starting point 
with excursion up to a distance R away from this starting point can be estimated as 

- - p / 2  

(4) ~ d i ( 2 - 2 )  

The last line follows from R 2  - T ’ / ~ ;  where 7 is the time necessary to undertake a root 
mean square displacement of R. d is the ratio d f / d L .  According to the AO conjecture 
d has the ‘superuniversal’ value of $ [20]. This implies that Pr(R) increases as R 
increases. Furthermore, within the accuracy of the AO conjecture, the exponent PI. = 
d L ( 2 - d )  for R in equation (4) becomes directly proportional to d k .  The dimensional 
dependence of P i  enters only through dL. In addition, note that PI is related to the 
parameter in the scaling theory of localisation on fractals via PI+ pL = 0 [ 191. Thus, 
dL is the effective dimensional exponent that characterises Pr( R )  in the fractal regime. 

The significance of Pr( R )  lies in the fact that it determines the probability of forming 
closed loops (i.e. self-intersecting pathways) of linear extent R. Quantum propagation 
amplitudes along closed loops in opposite direction (i.e. pairs of time-reversed paths) 
are phase coherent. These successive multiple return scatterings give rise to constructive 
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interference 121-231. They lead to a peak in the scattering intensity in the back- 
scattering direction. If the disorder is large enough then the accumulation of correlation 
through successive multiple return scatterings could lead to localisation of the particle. 
The physical basis of the argument is similar to the theory of diffusional correction to 
the transport coefficients in weak localisation phenomena [21-231. Although the 
thresholds for quantum percolation involve a strong localisation phenomenon, we 
believe that, for the present system, with strict time reversal invariance, at least the 
physical basis of the argument should remain applicable [23]. The overall effect is to 
lead to termination of the propagation of the quantum particle and localisation if the 
disorder is great enough. These physical arguments suggests that the random walk 
fractal dimension dk rather than the Euclidean dimension is the significant parameter 
here. Furthermore, the explicit form of equation (3) suggests that the parameter 
d k / ( d k  - 1) is in fact the average number of open bonds leading from any given node 
necessary for the establishment of an extended state in quantum percolation. Note 
that d k  only becomes relevant if localisation takes place within the fractal regime (i.e. 
within a region of linear size - 6 ) .  This we believe to be the case for d 3 3 [24,25]. 
In fact, if the excursion distance R is much larger than 6 then one is in the Euclidean 
regime. The probability of return P , ( R )  is given by 

P,(R)-[+ 

- - T 1 - d / Z  

cx R2-d if d 3 3. ( 5 )  

The last line follows from ( R 2 ) -  T in the Euclidean regime. Note that equation (5) is 
valid only for d 3 3 and that in those cases P , ( R )  decreases as R increases. This is 
qualitatively different from the situation in the fractal regime. A semi-quantitative 
sketch of the behaviour of P, as a function of R / [  for d = 3 is shown in figure 2. The 
detailed behaviour of P , ( R )  in the region close to 5 cannot be accounted for with the 
simple power law behaviour as indicated in equations (4) and ( 5 ) .  Nevertheless, the 

0 2 4 6 8 1 0  

Figure 2. Probability of return P, as a function of R / C  at d = 3 :  -, equation (4), fractal 
regime; - - -, equation (9, Euclidean regime; . . . . ., the boundary R = 5. 



Letter to the Editor L475 

two equations taken together imply that P , ( R )  (for d 3 3) reaches some maximal 
behaviour somewhere in the vicinity of the percolation correlation length 5. One 
expects that the localisation length ~ 6 .  Since the quantum percolation threshold pq 
occurs substantially above p E  it implies that, near pq, 5 is at most several lattice constants 
in length. Consequently, localisation is expected to be exponential for quantum 
percolation in d 3 3. However, if the localisation length is longer than 5 (as expected 
for d = 2), then dk would not be the relevant parameter for two-dimensional quantum 
percolation [26]. For this reason, our dimensionally invariant relationship is not 
expected to be applicable for d = 2. 

The above discussion is heuristic and physical rather than rigorous. Nevertheless, 
further support to the above ideas is provided by comparing our results to the 
perturbative theory of Harris [26] on quantum percolation. It can be seen from table 
I t  and figure 1 that, except for d = 3, the two approaches compare very favourably. 
The key element in the theory of Hams is a perturbative representation of hypercubic 
lattices in terms of addition of closed loops to a Cayley tree. The fact that the theory 
of Harris gives satisfactory results attests to the importance of closed loops (i.e. 
self-intersecting paths) leading to multiple return scatterings and subsequent localisa- 
tions. For d = 3, our results seem to be in better agreement with the numerical simulation 
data. The threshold seems to have been underestimated with the Harris result. This 
may be because the perturbation parameter in the theory of [26] is l/u, where U +  1 
is the lattice coordination number 2. Thus, the theory of Harris is expected to be more 
satisfactory at higher dimensions, as can be seen from table 1 and figure 1. 

Table 1. Values for p$ against dimension d. 

~~ ~~ ~- 

P$ 
numerical P: ~,*[261 

d experiments equation (3) (Harris) 

3 0.37[5], 0.32[8], 0.35[7] 0.357 0.30 

5 0.1 5 [ 8 ]  0.157 0.16 
6 0.12[8] 0.125 0.13 

8 0.086[8] 0.094 0.095 

4 0.23[5], 0.20[8] 0.218 0.21 

7 0.10[8] 0.107 0.108 

Using equation (3) and assuming its general validity, we have estimated the quantum 
bond percolation thresholds, p ; ,  for the diamond lattice (pq* = 0.536), the BCC lattice 
( p , *  = 0.268), and the FCC lattice (pq* = 0.179). As far as the authors are aware, this is 
the first time that estimates of p ;  for these three-dimensional lattices have been made. 
It would be interesting to compare these estimates with those from detailed computer 
simulations. This would serve to better determine the regime where our dimensionally 
invariant relationship is valid. The above discussion leads to an interesting question. 
Our heuristic argument rests mainly on two points. Firstly, the use of P , ( R )  if the 
mode of propagation can be described as diffusive (in both fractal and Euclidean 
domain), and secondly the possibility of constructive interference for propagation 

t These results were obtained by us using the theory in [26]. 
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along pairs of time-reversed paths. Thus, one might expect similar phenomena occurr- 
ing for wave propagation in general (classical or quantum) on percolation clusters?. 
In particular threshold behaviour characterised by d k  and equation (3 )  might be 
anticipated. One may gain important insight into these questions as well as the problems 
of quantum percolation and localisation by exploring further the theoretical implica- 
tions of the present results. 

In conclusion, we have discovered an empirical relationship between p,*, Z and 
d; .  The physical significance of d ;  is discussed in terms of self-intersecting pathways 
and multiple return scatterings. The relationship gives results that compare very 
favourably with existing numerical experiments and analytical theory. It identifies an 
important parameter, d ; / ( d ;  - l ) ,  which is the average number of open bonds leading 
from any given node necessary for the establishment of an extended state in quantum 
percolation. If our relationship for quantum percolation has general applicability 
similar to its classical counterpart, then it could provide rapid and useful estimates 
for the critical thresholds. It would be particularly useful for many applications in 
which either the underlying lattice structures are too complex for efficient simulations 
or else there is only local short-range order. Even in systems that are more amenable 
to numerical simulations, it would be useful to have a good idea of the general location 
of the critical threshold. More importantly, our dimensionally invariant relationship 
would suggest a deep and hitherto unsuspected connection between quantum percola- 
tion and fractal random walk. 

This work was performed under the support of the US Department of Energy. A 
pre1imina:y version of this work was presented at the Symposium on Fractal Aspects 
of Materials, Materials Research Society Meeting, December 2-4, 1985, Boston, MA. 
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